1. Noerman, S., Kolehmainen, M. & Hanhineva, K. Profiling of endogenous and gut microbial metabolites to indicate metabotype-specific dietary responses: A systematic review. Adv. Nutr. 11, 1237–1254 (2020).
  2. Hillesheim, E., Yin, X., Sundaramoorthy, G. P. & Brennan, L. Using a metabotype framework to deliver personalized nutrition improves dietary quality and metabolic health parameters: A 12-week randomized controlled trial. Mol. Nutr. Food Res. 67, e2200620 (2023).
  3. Kuchay, M. S., Choudhary, N. S. & Mishra, S. K. Pathophysiological mechanisms underlying MASLD. Diabetes Metab. Syndr. 14, 1875–1887 (2020).
  4. Gofton, C., Upendran, Y., Zheng, M.-H. & George, J. MASLD: How is it different from NAFLD? Clin. Mol. Hepatol. 29, S17–S31 (2023).
  5. Yamamura, S. et al. MASLD identifies patients with significant hepatic fibrosis better than NAFLD. Liver Int. 40, 3018–3030 (2020).
  6. Kolodziejczyk, A. A., Zheng, D., Shibolet, O. & Elinav, E. The role of the microbiome in NAFLD and NASH. EMBO Mol. Med. 11, e9302 (2019).
  7. Wu, LY., Wijesekara, Y., Piedade, G.J. et al. Benchmarking bioinformatic virus identification tools using real-world metagenomic data across biomes. Genome Biol 25, 97 (2024).
  8. Basso, D., Padoan, A., D’Incà, R., Arrigoni, G., Scapellato, M., Contran, N., Franchin, C., Lorenzon, G., Mescoli, C., Moz, S., Bozzato, D., Rugge, M. & Plebani, M. Peptidomic and proteomic analysis of stool for diagnosing IBD and deciphering disease pathogenesis. Clinical Chemistry and Laboratory Medicine (CCLM), 58(6), 968-979 (2020).
  9. Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).
  10. Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017).
  11. Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk v2: memory friendly classification with the genome taxonomy database. Bioinformatics 38, 5315–5316 (2022).
  12. Parks, D. H. et al. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res. 50, D785–D794 (2022).
  13. Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 257 (2019).
  14. Lu, J., Breitwieser, F. P., Thielen, P. & Salzberg, S. L. Bracken: estimating species abundance in metagenomics data. PeerJ Comput. Sci. 3, e104 (2017).
  15. Kolodziejczyk, A. A., Zheng, D. & Elinav, E. Diet-microbiota interactions and personalized nutrition. Nat. Rev. Microbiol. 17, 742–753 (2019).
  16. Kolodziejczyk, A. A., Zheng, D., Shibolet, O. & Elinav, E. The role of the microbiome in NAFLD and NASH. EMBO Mol. Med. 11, e9302 (2019).
  17. Lang, S. & Schnabl, B. Microbiota and Fatty Liver Disease—the Known, the Unknown, and the Future. Cell Host Microbe 28, 233–244 (2020).
  18. Henao-Mejia, J. et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482, 179–185 (2012).
  19. Koyama, Y. & Brenner, D. A. Liver inflammation and fibrosis. J. Clin. Invest. 127, 55–64 (2017).
  20. Loomba, R. et al. Gut Microbiome-Based Metagenomic Signature for Non-invasive Detection of Advanced Fibrosis in Human Nonalcoholic Fatty Liver Disease. Cell Metab. 30, 607 (2019).
  21. Aron-Wisnewsky, J. et al. Gut microbiota and human NAFLD: disentangling microbial signatures from metabolic disorders. Nat. Rev. Gastroenterol. Hepatol. 17, 279–297 (2020).
  22. Lee, G. et al. Distinct signatures of gut microbiome and metabolites associated with significant fibrosis in non-obese NAFLD. Nat. Commun. 11, 4982 (2020).
  23. Caussy, C. et al. A gut microbiome signature for cirrhosis due to nonalcoholic fatty liver disease. Nat. Commun. 10, 1406 (2019).
  24. Boursier, J. et al. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology 63, 764–775 (2016).
  25. Agus, A., Cl.ment, K. & Sokol, H. Gut microbiota-derived metabolites as central regulators in metabolic disorders. Gut 70, 1174–1182 (2021).
  26. Ding, Y. et al. Microbially-derived indole-3-acetate alleviates diet induced steatosis and inflammation in mice. (2023) doi:10.7554/elife.87458.1.
  27. Li, R. et al. The gut microbial metabolite, 3,4-dihydroxyphenylpropionic acid, alleviates hepatic ischemia/reperfusion injury via mitigation of macrophage pro-inflammatory activity in mice. Acta Pharm. Sin. B. 12, 182–196 (2022).
  28. Lin, C.-C., Yin, M.-C. & Liu, W.-H. Alleviative effects of s-allyl cysteine and s-ethyl cysteine on MCD diet-induced hepatotoxicity in mice. Food Chem. Toxicol. 46, 3401–3406 (2008).
  29. Afifi, N. A. et al. Trigonelline attenuates hepatic complications and molecular alterations in high-fat high-fructose diet-induced insulin resistance in rats. Can. J. Physiol. Pharmacol. 95, 427–436 (2017).
  30. Zhang, D.-F., Zhang, F., Zhang, J., Zhang, R.-M. & Li, R. Protection effect of trigonelline on liver of rats with non-alcoholic fatty liver diseases. Asian Pac. J. Trop. Med. 8, 651–654 (2015).
  31. Urasaki, Y., Pizzorno, G. & Le, T. T. Chronic uridine administration induces fatty liver and prediabetic conditions in mice. PLoS One 11, e0146994 (2016).
  32. Chen, Y.-M. et al. Associations of gut-flora-dependent metabolite trimethylamine-N-oxide, betaine and choline with non-alcoholic fatty liver disease in adults. Sci. Rep. 6, 19076 (2016).
  33. Ramon, C. & Stelling, J. Functional comparison of metabolic networks across species. Nat. Commun. 14, 1699 (2023).
  34. Gallage, S. et al. A researcher’s guide to preclinical mouse NASH models. Nat. Metab. 4, 1632–1649 (2022).
  35. Tripathi, A. et al. The gut–liver axis and the intersection with the microbiome. Nat. Rev. Gastroenterol. Hepatol. 15, 397–411 (2018).
  36. Ji, Y., Gao, Y., Chen, H., Yin, Y. & Zhang, W. Indole-3-acetic acid alleviates nonalcoholic fatty liver disease in mice via attenuation of hepatic lipogenesis, and oxidative and inflammatory stress. Nutrients 11, 2062 (2019).
  37. Kubes, P. & Mehal, W. Z. Sterile inflammation in the liver. Gastroenterology 143, 1158–1172 (2012).
  38. An, P. et al. Hepatocyte mitochondria-derived danger signals directly activate hepatic stellate cells and drive progression of liver fibrosis. Nat. Commun. 11, 2362 (2020).
  39. Hammerich, L. & Tacke, F. Hepatic inflammatory responses in liver fibrosis. Nat. Rev. Gastroenterol. Hepatol. 20, 633–646 (2023).
  40. Schuster, S., Cabrera, D., Arrese, M. & Feldstein, A. E. Triggering and resolution of inflammation in NASH. Nat. Rev. Gastroenterol. Hepatol. 15, 349–364 (2018).